Q.P. Code: 16CE135											\mathbf{R}_1	R16	
F	Reg. No:												
						(AU	TONO	OMOL	JS)			COGY: PUTTUR	
	2					ME	LHOL	S IN	CIVII			ERING	
(Civil Engineering) Time: 3 hours Max. Mark												cs: 60	
_	111101 0 110011			(An	swer a	all Fiv	e Unit	s 5 x 1	12 = 6	0 Mar	ks)	112001	
				`			UNI				,		
1	Determine the deflection at the center of simply supported beam of span length '1' subjected											12M	
	to Uniformly distributed load throughout its length. Use Rayleigh-Ritz method.												
					_		0	R		_			
2	Explain the plane strain condition and Axi-symmetric condition. Write the constitutive											12M	
	relations for plane stress condition.												
							UNI	Γ-II					
3	Derive the	stiffnes	ss mat	rix for	one d	imens	ional l	oar ele	ment.				12M
							O	R					
4	a Explain a	ibout E	lastici	ty equa	ation.								6M
	b Explain t	b Explain the relation between stresses and strains.											
							UNIT	Γ-III					
5	Derive the shape functions for two dimensional Tri-angular element.												12M
							O	R					
6	Determine	the sh	ape fu	nctions	s N1,1	N2,N3	3 at in	terior	point	'p' fo	r triar	ngular element. The	12M
	co-ordinate are P(3.5,5), (2,3),(7,4) and (4,7).												
							UNI	Γ-IV					
7	Explain abo	out plar	ne stre	ss and	plane	strain	analy	sis.					12M
							0	R					
8	a Derive St	tress-S	train r	elation	ship n	natrix							6M
	b Derive St	tress di	splace	ment r	elatio	nship	matrix	ζ.					6M
							UNI'	Γ-V					
9	Explain abo	out lag	rangia	n and s	erend	ipity 6	elemer	its.					12M

OR

10 Compare general quadratic element and ISO -Parametric quadrilateral element in terms of 12M displacement.

*** END ***